СТРУКТУРА ДОКУМЕНТА

Рабочая программа включает следующие разделы:

- 1. Пояснительная записка.
- 2. Тематический план.
- 3. Календарно-тематический (поурочный) план.
- 4. Содержание тем учебного курса.
- 5. Требования к уровню подготовки обучающихся по данной программе.
- 6. Список литературы.
- 7. Приложение к программе.

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Данная рабочая программа разработана на основе следующего нормативно-правового и инструктивно-методического обеспечения:

- Федеральный компонент государственного образовательного стандарта общего образования (Приказ Министерства образования РФ от 05.03.2004 г. №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования»).
- Приказ Министерства образования и науки Российской Федерации (Минобрнауки России) от 31 марта 2014 г. № 253 г. Москва "Об утверждении федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования".
- Приказ Минобрнауки России № 576 от 8 июня 2015 г. "О внесении изменений в федеральный перечень учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования, утвержденный приказом Министерства образования и науки Российской Федерации от 31 марта 2014 г. № 253".
- Региональный базисный учебный план и примерные учебные планы для образовательных учреждений Воронежской области, реализующих государственные образовательные стандарты начального общего, основного общего и среднего (полного) общего образования (Приказ Департамента, науки и молодежной политики Воронежской области от 27 июля 2012г. №760).
- Примерные учебные планы для вечерних (сменных) общеобразовательных учреждений Воронежской области, реализующих государственные образовательные стандарты основного общего и среднего полного общего образования (Приказ Департамента, науки и молодежной политики Воронежской области от 27 августа 2012г. № 831).
- Учебный план среднего общего образования МБОУ ОСОШ №11 на 2015-2016 учебный год.

Рабочая программа по физике для 11 класса составлена на основе поурочного планирования Шилова А.В. (Физика: 10-11 кл.: поурочное планирование: пособие для учителей общеобразовательных организаций/В.Ф.Шилов. — М.: Просвещение, 2013) с учетом учебного плана МБОУ ОСОШ №11 применительно к учебно-методическому комплекту:

- 1. Физика. 11 класс: учебник для общеобразовательных организаций с приложением на электронном носителе: базовый уровень / Г.Я.Мякишев, Б.Б.Буховцев, В.М.Чаругин; под ред. Н.А.Парфентьевой. М.: Просвещение, 2014.
- 2. Физика. 11 класс. Электронное приложение к учебнику Мякишева Г.Я., Буховцева Б.Б., В.М.Чаругина.
- 3. Левитан Е.П. Астрономия 11 класс: Учебник для общеобразовательных учреждений. М: Дро- фа. 2010.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от учащихся самостоятельной деятельности по их разрешению. Ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики.

Изучение физики в общеобразовательных учреждениях на базовом уровне направлено на достижение следующих целей:

- **освоение знаний** о фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; о наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; о методах научного познания природы;
- овладение умениями проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разно-

- образных физических явлений и свойств веществ; оценивать достоверность естественнонаучной информации;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;
- **воспитание** убежденности в возможности познания законов природы, использования достижений физики на благо развития человеческой цивилизации, необходимости сотрудничества в процессе совместного выполнения задач; воспитание уважительного отношения к мнению оппонента, готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- **использование приобретенных знаний и умений** для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.
 - Достижение этих целей обеспечивается решением следующих задач:
- знакомство учащихся с методом научного познания и методами исследования объектов и явлений природы;
- приобретение учащимися знаний о механических, тепловых, электромагнитных и квантовых явлений, физических величинах, характеризующих эти явления;
- формирование у учащихся *умений наблюдать* природные явления и *выполнять опыты*, лабораторные работы и *экспериментальные исследования* с использованием измерительных приборов, *широко применяемых в практической жизни*;
- овладение учащимися такими общенаучными понятиями, как природное явление, эмпирически установленный факт, проблема, теоретический вывод, результат экспериментальной проверки:
- понимание учащимися отличий научных данных от непроверенной информации, ценности науки удовлетворения бытовых, производных и культурных потребностей человека.

Курс «Физика» в 11 классе двухгодичного обучения изучается согласно учебному плану МБОУ ОСОШ №11 на 2015-2016 учебный год и рассчитан на 72 часа (2 часа в неделю).

Для организации коллективных и индивидуальных наблюдений физических явлений и процессов, измерения физических величин и установления законов, подтверждения теоретических выводов запланированы наблюдение демонстрационных опытов, выполнение лабораторных работ учащимися. Рабочая программа предусматривает выполнение практической части курса: 3-х лабораторных работ, 6-ти контрольных работ. Тексты лабораторных работ приводятся в учебнике.

2. ТЕМАТИЧЕСКИЙ ПЛАН

№	Название учебного раздела	Кол-	Практические и контрольные работы	
п/п		во		
		часов		
I.	Магнитное поле. Электро-	12	Входная контрольная работа	
	магнитная индукция.		К.р. №1 «Магнитное поле. Электромагнитная ин-	
			дукция»	
II.	Механические и электромаг-	17	Л.р. №1 «Определение ускорения свободного па-	
	нитные колебания и волны.		дения при помощи маятника»	
			К.р. №2 «Механические и электромагнитные ко-	
			лебания и волны» (Рубежная диагностическая.)	
III.	Световые волны	9	Л.р. №2 «Измерение показателя преломления	
			стекла»	
			Л.р. №3 «Измерение длины световой волны»	
IV.	Элементы СТО	2		
V.	Излучения и спектры	2		
VI.	Световые кванты	5	К.р. №3 «Световые волны. Световые кванты»	
VII.	Физика атома и атомного	11	К.р. №4 «Физика атома и атомного ядра»	

	ядра. Элементарные части-		
	цы.		
VIII.	Основы астрономии	6	Тест
IX.	Повторение	4	Итоговая диагностическая работа
			-
X.	Резерв	4	
XI.	Итого	72	

3. КАЛЕНДАРНО-ТЕМАТИЧЕСКИЙ (ПОУРОЧНЫЙ) ПЛАН

№ п/п	Тема урока	Д/з	Дата план.	Дата факт.
	Магнитное поле. Электромагнитная индукци	ия (12 часов))	I
1.	<u>Инструктаж по ТБ и ПБ</u> . Взаимодействие токов. Магнитное поле. Вектор магнитной индукции.	§ 1-2		
2.	Сила Ампера. Электроизмерительные приборы. Применение закона Ампера. Громкоговоритель	§ 3-5 Зад. в тетр.		
3.	Действие магнитного поля на движущейся заряд. Сила Лоренца. Магнитные свойства вещества.	§ 6-7 Зад. в тетр.		
4.	Решение задач на силу Ампера и силу Лоренца.	Зад. в тетр.		
5.	Открытие электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца.	§ .8-10 Зад. в тетр.		
6.	Закон электромагнитной индукции.	§ 11 Зад. в тетр.		
7.	ВХОДНАЯ КОНТРОЛЬНАЯ РАБОТА			
8.	Вихревое электрическое поле. ЭДС индукции в движущихся проводниках.	§ 12-13 Зад. в тетр.		
9.	Электродинамический микрофон. Самоиндукция. Индуктивность.	§ 14-15 Зад. в тетр.		
10.	Энергия магнитного поля тока. Электромагнитное поле.	§ 16-17 Зад. в тетр.		
11.	Решение задач. Подготовка к контрольной работе.	Зад. в тетр.		
12.	Контрольная работа №1 «Магнитное поле. Электромагнитная индукция»			
	Механические и электромагнитные колебания и	волны (17 ч	асов)	
13.	Свободные и вынужденные колебания. Условия возникновения свободных колебаний. Математический маятник. Динамика колебательного движения.	§ 18-21		
14.	Лабораторная работа №1«Определение ускорения свобод- ного падения при помощи маятника»			
15.	Гармонические колебания. Фаза колебаний. Превращение энергии при гармонических колебаниях.	§ 22-24 Зад. в тетр.		
16.	Вынужденные колебания. Резонанс. Применение резонанса и борьба с ним.	§ 25-26		
17.	Свободные и вынужденные электромагнитные колебания. Колебательный контур. Аналогия между механическими и электромагнитными колебаниями.	§ 27-29 Зад. в тетр.		
18.	Уравнение описывающие процессы в колебательном контуре. Период свободных электрических колебаний. Переменный	§ 30 Зад. в тетр.		

	Ţ.	,
	электрический ток.	
19.	Активное сопротивление. Действующие значения силы тока.	§ 32
		Зад. в тетр.
20.	Конденсатор и катушка индуктивности в цепи переменного	§ 33
	тока.	Зад. в тетр.
21.	Резонанс в электрической цепи. Генератор на транзисторе. Автоколебания	§ 35-36
22.	Генерирование электрической энергии. Трансформаторы. Производство, передача и использование электрической энергии	§ 37-42
23.	Волновые явления. Длина волны. Скорость волны. Уравнение бегущей волны. Волны в среде. Звуковые волны.	§ 42-47 Зад. в тетр.
24.	Что такое электромагнитная волна. Экспериментальное обнаружение электромагнитных волн. Плотность потока электромагнитного излучения.	§ 48-50
25.	Изобретение радио А.С.Поповым Принципы радиосвязи. Как осуществляется модуляция и детектирование.	§ 51-53
26.	Свойства электромагнитных волн.	§ 54
27.	Распространение радиоволн. Радиолокация Понятие о телевидении. Развитие средств связи.	§ 55-58
28.	Решение задач. Подготовка к контрольной работе.	Зад. в тетр.
29.	Контрольная работа №2 «Механические и электромаг- нитные колебания и волны» (Диагностическая)	
	Световые волны (9 часов)	
30.	Скорость света. Принцип Гюйгенса. Закон отражения света. Закон преломления света. Полное отражение.	§ 59-62
31.	Лабораторная работа №2 «Измерение показателя преломления стекла»	
32.	Линза. Построение изображения в линзах. Формула тонкой линзы. Увеличение линзы	§ 63-65 Зад. в тетр.
33.	Решение задач на линзы.	Зад. в тетр.
34.	Дисперсия света.	§ 66
35.	Интерференция механических волн. Интерференция света. Некоторые применения интерференции	§ 67-69 Зад. в тетр.
36.	Дифракция механических волн. Дифракция света. Дифракционная решетка.	§ 70-72 Зад. в тетр.
37.	Лабораторная работа №3 «Измерение длины световой волны»	
38.	Поперечность световых волн. Поляризация света. Поперечность световых волн и электромагнитная теория света.	§ 73-74
	Элементы СТО (2 часа)	1 1
39.	Законы электродинамики и принцип относительности. Постулаты СТО Основные следствия вытекающие из постулатов СТО.	§ 75-78
40.	Зависимость массы от скорости. Релятивистская динамика. Связь между массой и энергией.	§ 79-80 Зад. в тетр.
	Излучения и спектры (2 часа)	

41.	Виды излучений. Источники света. Спектры и спектральные аппараты. Виды спектров. Спектральный анализ.	§ 81-84
42.	Инфракрасное и ультрафиолетовое излучения. Рентгеновские	§ 85-87
	лучи. Шкала электромагнитных излучений.	Зад. в тетр.
	Световые кванты (5 часа)	, , , , , , , , , , , , , , , , , , , ,
43.	Фотоэффект. Теория фотоэффекта.	§ 88-89
44.	Фотоны. Применение фотоэффекта.	§ 90-91
		Зад. в тетр.
45.	Давление света. Химическое действие света. Фотография.	§ 92-93
46.	Решение задач. Подготовка к контрольной работе.	Зад. в тетр.
47.	Контрольная работа №3 «Световые волны. Световые кванты»	
	Физика атома и атомного ядра. Элементарные ча	стицы (11 часов)
48.	Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода по Бору.	§ 94-95
49.	Трудности теории Бора. Квантовая механика. Лазер.	§ 96-97
50.	Методы наблюдения и регистрации элементарных частиц Открытие радиоактивности. Альфа-, бета-, и гамма излучения.	§ 98-100
51.	Радиоактивные превращения. Закон радиоактивного распада, период полураспада. Изотопы.	§ 101-103
52.	Открытие нейтрона. Строение атомного ядра. Ядерные силы.	§ 104-105
53.	Энергия связи атомных ядер. Ядерные реакции.	§ 106-107
		Зад. в тетр.
54.	Деление ядер урана. Цепные ядерные реакции. Ядерный реактор. Термоядерные реакции.	§ 108-111
55.	Решение задач.	Зад. в тетр.
56.	Применение ядерной энергии. Получение радиоактивных изотопов и их применение. Биологическое действие радиоактивных излучений	§ 112-114
57.	Три этапа в развитии физики элементарных частиц. Открытие позитрона. Античастицы. Единая физическая картина мира. Физика и научно техническая революция	§ 115-118
58.	Контрольная работа №4 « Физика атома и атомного ядра»	
	Основы астрономии (6 часов)	
59.	Звездное небо. Звездная карта. Развитие представлений о Солнечной системе. Строение Солнечной системы.	конспект
60.	Законы Кеплера. Уточнение Ньютоном законов Кеплера.	конспект
61.	Планеты Солнечной системы.	конспект
62.	Малые тела Солнечной системы.	конспект
63.	Общие сведения о Солнце. Источники энергии и внутреннее строение Солнца. Физическая природа звезд.	конспект
64.	Наша галактика. Другие галактики. Происхождение и эволюция галактик, звезд и планет. Современные представления о строении Вселенной. Тест.	конспект
	Повторение (4 часа)	· · · · · ·
65.	Повторение фундаментальных законов механики	конспект
66.	Повторение фундаментальных законов термодинамики и	конспект
•	1 17 77	

	электродинамики					
67.	Решение комбинированных задач.	конспект				
68.	ИТОГОВАЯ ДИАГНОСТИЧЕСКАЯ РАБОТА					
	Резерв (4 часа)					
69.	Решение комбинированных задач	Зад. в тетр.				
70.	Решение комбинированных задач	Зад. в тетр.				
71.	Решение комбинированных задач	Зад. в тетр.				
72.	Решение комбинированных задач	Зад. в тетр.				

4. СОДЕРЖАНИЕ ТЕМ УЧЕБНОГО КУРСА

Физика – наука о природе. Научные методы познания окружающего мира и их отличия от других методов познания. Роль эксперимента и теории в процессе познания природы. *Моделирование физических явлений и процессов*. Научные гипотезы. Физические законы. Физические теории. *Границы применимости физических законов и теорий*. *Принцип соответствия*. Основные элементы физической картины мира.

Магнитное поле. Электромагнитная индукция (12 часов)

Взаимодействие токов. Магнитное поле тока. Магнитная индукция. Линии индукции магнитного поля. Магнитный поток. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитных полях. Телевизионная трубка. Магнитная проницаемость. Индуктивность. Энергия магнитного поля. Электромагнитная индукция. ЭДС индукции в проводнике, движущемся в магнитном поле. Закон Фарадея — Максвелла. Правило Ленца. Взаимосвязь электрического и магнитного полей. Электромагнитное поле.

Объяснение устройства и принципа действия технических объектов, практическое применение физических знаний в повседневной жизни: при использовании микрофона, динамика, трансформатора, телефона, магнитофона; для безопасного обращения с домашней электропроводкой, бытовой электро- и радиоаппаратурой.

Практическое применение: электроизмерительные приборы магнитоэлектрической системы. **Демонстрации:**

- Взаимодействие параллельных токов.
- Действие магнитного поля на ток.
- Устройство и действие амперметра и вольтметра.
- Устройство и действие громкоговорителя.
- Отклонение электронного лучка магнитным полем.
- Электромагнитная индукция.
- Правило Ленца.
- Зависимость ЭДС индукции от скорости изменения магнитного потока.
- Самоиндукция.
- Зависимость ЭДС самоиндукции от скорости изменения силы цели и от индуктивности проводника.

Механические и электромагнитные колебания и волны (17 часов)

Свободные колебания. Вынужденные колебания. Математический маятник. Гармонические колебания. Резонанс.

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Переменный электрический ток. Генерирование электрической энергии. Трансформатор. Передача электрической энергии. Электромагнитные волны. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

Практическое применение: генератор переменного тока, схема радиотелефонной связи, телевиление.

Демонстрации:

- Свободные электромагнитные колебания низкой частоты в колебательном контуре.
- Зависимость частоты свободных электромагнитных колебаний от электроемкости и индуктивности контура.
- Незатухающие электромагнитные колебания в генераторе на транзисторе.
- Получение переменного тока при вращении витка в магнитном поле.
- Устройство и принцип действия генератора переменного тока (на модели).
- Осциллограммы переменною тока
- Устройство и принцип действия трансформатора
- Передача электрической энергии на расстояние с мощью понижающего и повышающего трансформатора.
- Электрический резонанс.
- Излучение и прием электромагнитных волн.
- Модуляция и детектирование высокочастотных электромагнитных колебаний.

Световые волны (9 часов)

Электромагнитные волны. Скорость света и методы ее измерения. Законы отражения и преломления света. Волновые свойства света: дисперсия, интерференция света, дифракция света. Когерентность. Поперечность световых волн. Поляризация света.

Практическое применение: полного отражения, интерференции, дифракции и поляризации света.

Демонстрации:

- Законы преломления света.
- Полное отражение.
- Световод.
- Получение интерференционных полос.
- Дифракция света на тонкой нити.
- Дифракция света на узкой щели.
- Разложение света в спектр с помощью дифракционной решетки.
- Получение спектра с помощью призмы.
- Поляризация света поляроидами.
- Применение поляроидов для изучения механических напряжений в деталях конструкций.
- Прямолинейное распространение, отражение и преломление света.
- Оптические приборы

Элементы СТО (2 часа)

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

Излучения и спектры (2 часа)

Различные виды электромагнитных излучений и их практическое применение: свойства и применение инфракрасных, ультрафиолетовых и рентгеновских излучений. Шкала электромагнитных излучений.

Практическое применение: практическое применение электромагнитных волн инфракрасного, видимого, ультрафиолетового и рентгеновского диапазонов частот.

Демонстрации:

- Невидимые излучения в спектре нагретого тела.
- Свойства инфракрасного излучения.
- Свойства ультрафиолетового излучения.
- Шкала электромагнитных излучений (таблица).

Световые кванты (5 часов)

Гипотеза Планка о квантах. Фотоэффект. Теория фотоэффекта. Законы фотоэффекта. Фотоны. Корпускулярно-волновой дуализм. Гипотеза де Бройля о волновых свойствах частиц. Давление света. Химическое действие света. Фотография.

Практическое применение: полупроводниковые и вакуумные фотоэлементы, фотография.

Демонстрации:

- Фотоэлектрический эффект на установке с цинковой платиной.
- Законы внешнего фотоэффекта.
- Устройство и действие полупроводникового и вакуумного фотоэлементов.
- Устройство и действие фотореле на фотоэлементе.
- Модель опыта Резерфорда.
- Фотоэлектрический эффект на установке с цинковой платиной.
- Законы внешнего фотоэффекта.
- Устройство и действие полупроводникового и вакуумного фотоэлементов.
- Устройство и действие фотореле на фотоэлементе.

Физика атома и атомного ядра. Элементарные частицы (11 часов)

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Испускание и поглощение света атомом. Лазеры.

Модели строения атомного ядра: протонно-нейтронная модель строения атомного ядра. Ядерные силы. Дефект массы и энергия связи нуклонов в ядре. Ядерная энергетика. Влияние ионизирующей радиации на живые организмы. Доза излучения, закон радиоактивного распада и его статистический характер. Элементарные частицы: частицы и античастицы. Фундаментальные взаимодействия

Значение физики для объяснения мира и развития производительных сил общества. Единая физическая картина мира.

Практическое применение: применение спектрального анализа; устройство и принцип действия ядерного реактора.

Демонстрации:

- Линейчатые спектры излучения.
- Лазер.
- Модель опыта Резерфорда.
- Наблюдение треков в камере Вильсона.
- Устройство и действие счетчика ионизирующих частиц.

Основы астрономии (7 часов)

Звездное небо. Звездная карта. Развитие представлений о Солнечной системе. Строение солнечной системы. Система «Земля — Луна». Законы Кеплера. Планеты Солнечной системы. Малые тела Солнечной системы. Наблюдение и описание движения небесных тел. Общие сведения о Солнце (вид в телескоп, вращение, размеры, масса, светимость, температура солнца и состояние вещества в нем, химический состав). Источники энергии и внутреннее строение Солнца. Физическая природа звезд. Наша Галактика (состав, строение, движение звезд в Галактике и ее вращение). Происхождение и эволюция галактик и звезд.

Демонстрации:

- Небесная сфера.
- Солнечная система.

5. ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ОБУЧАЮЩИХСЯ ПО ДАННОЙ ПРОГРАММЕ

Предметные результаты: в соответствии с приказом Министерства образования РФ от 05.03.2004г. №1089 «Об утверждении федерального компонента государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования» в результате изучения физики на базовом уровне в 11 классе ученик должен:

знать/понимать:

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, Солнечная система, галактика, Вселенная;
 - смысл физических законов электромагнитной индукции, фотоэффекта;
 - вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики;

уметь:

- описывать и объяснять физические явления и свойства тел: движение небесных тел и искусственных спутников Земли; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- отличать гипотезы от научных теорий; делать выводы на основе экспериментальных данных; приводить примеры, показывающие, что: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; что физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- приводить примеры практического использования физических знаний: различных видов электромагнитных излучений для развития радио- и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях;

использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи;
 - оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
 - рационального природопользования и охраны окружающей среды;
- понимания взаимосвязи учебного предмета с особенностями профессий и профессиональной деятельности, в основе которых лежат знания по данному учебному предмету.

Личностные результаты обучения физике в средней школе:

- сформированность ценностей образования, личностной значимости физического знания независимо от профессиональной деятельности, научных знаний и методов познания, творческой созидательной деятельности, здорового образа жизни, процесса диалогического, толерантного общения, смыслового чтения;
- сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;
- убежденность в возможности познания природы, в необходимости разумного использования достижений науки и технологий для дальнейшего развития человеческого общества, уважение к научной деятельности людей, понимания физики как элемента общечеловеческой культуры в историческом контексте.
- мотивация образовательной деятельности учащихся как основы саморазвития и совершенствования личности на основе герменевтического, личностно-ориентированного, феноменологического и эколого-эмпатийного подхода.

Метапредметными результатами в средней школе являются универсальные учебные действия (далее УУД). К ним относятся:

- Личностные УУД обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и события с принятыми этическими принципами, знание моральных норм и умение выделить нравственный аспект поведения), самоопределение и ориентацию в социальных ролях и межличностных отношениях, приводит к становлению ценностной структуры сознания личности.
- Регулятивные УУД обеспечивают организацию учащимися своей учебной деятельности.
- Познавательные УУД направлены на установление связей и отношений в любой области знания, обеспечивающие конкретные способы преобразования учебного материала.
- Коммуникативные УУД обеспечивают социальную компетентность и сознательную ориентацию учащихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем, интегрироваться в группу сверстников и строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми.

Так же программа предусматривает формирование у учащихся ключевых компетенций:

познавательная:

- использование для познания окружающего мира различных естественнонаучных методов: наблюдение, измерение, эксперимент, моделирование;
- формирование умений различать факты, гипотезы, причины, следствия, доказательства, законы, теории;
- овладение адекватными способами решения теоретических и экспериментальных задач;
- приобретение опыта выдвижения гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез;

информационно - коммуникативная:

- владение монологической и диалогической речью, развитие способности понимать точку зрения собеседника и признавать право на иное мнение;
- использовать для решения познавательных и коммуникативных задач различных источников информации;

рефлексивная:

- владение навыками контроля и оценки своей деятельности, умением предвидеть возможные результаты своих действий;
- организация учебной деятельности: постановка цели, планирование, определение оптимального соотношения цели и средств.

6. СПИСОК ЛИТЕРАТУРЫ

Основная литература

- **1.** Государственный образовательный стандарт общего образования. // Официальные документы в образовании. 2004. № 24-25.
- **2.** Закон Российской Федерации «Об образовании» // Образование в документах и комментариях. М.: АСТ «Астрель» Профиздат. -2005. 64 с.
- **3.** Учебник: Мякишев Г.Я., Буховцев Б.Б., Сотский Н. Н.Физика: Учеб. Для 11 кл. общеобразовательных учреждений. М.: Просвещение, 2014.
- **4. Сборники** задач: Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учреждений / Рымкевич А.П. 8-е изд., стереотип. М.: Дрофа, 2008. 192 с.
- **5.** Шилов В.Я. Физика: 10-11 кл.: поурочное планирование: пособие для учителей общеобразовательных организаций М.: Просвещение, 2013.

Методическое обеспечение:

- **1.** Каменецкий С.Е., Орехов В.П.. Методика решения задач по физике в средней школе. М.: Просвещение, 1987.
- **2.** Коровин В.А., Степанова Г.Н. Материалы для подготовки и проведения итоговой аттестации выпускников средней (полной) школы по физике. Дрофа, 2001-2002

- **3.** Коровин В.А., Демидова М.Ю. Методический справочник учителя физики. Мнемозина, 2000-2003
- 4. Сауров Ю.А. Физика в 11 классе: Модели уроков: Кн. Для учителя. М.: Просвещение, 2005

Дидактические материалы:

- 1. Контрольные работы по физике в 7-11 классах средней школы: Дидактический материал. Под ред. Э.Е. Эвенчик, С.Я. Шамаша. М.: Просвещение, 1991.
- 2. Кабардин О.Ф., Орлов В.А., Физика. Тесты. 10-11 классы. М.: Дрофа, 2000.
- 3. Кирик Л.А., Дик Ю.И.. Физика. 10,11 классах. Сборник заданий и самостоятельных работ.— М: Илекса, 2004.
- 4. Кирик Л. А.: Физика. Самостоятельные и контрольные работы. Механика. Молекулярная физика. Электричество и магнетизм. Москва-Харьков, Илекса, 1999г.
- 5. Марон А.Е., Марон Е.А.. Физика 10,11 классах. Дидактические материалы.- М.: Дрофа, 2004
- 6. Москалев А.Н., Никулова Г.А.Физика. Готовимся к ЕГЭ Москва: Дрофа, 2009

Кроме этого используются цифровые образовательные ресурсы Интернет-порталов:

- **1.** http://window.edu.ru/ Единое окно доступа к образовательным ресурсам. Электронная библиотека.
- 2. http://school-collection.edu.ru/ Единая коллекция Цифровых Образовательных Ресурсов
- 3. http://fcior.edu.ru/ Федеральный центр информационно-образовательных ресурсов